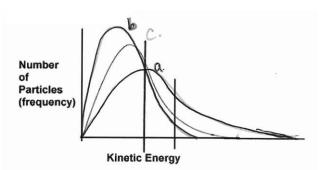
Unit Homework – Reaction Kinetics – Solutions

Measuring Reaction Rates

- 1. Zinc and hydrochloric acid
 - a. Rate = -0.0005 g/s
 - b. Rate = -7.65×10^{-6} mol/s
 - c. Concentration will decrease
 - d. Nothing it is a spectator ion (concentration will remain constant)
- 2. HCl is a reactant, so it will decrease quickly at first, then more slowly until it reaches zero


- 3. Pentane...
 - a. $C_5H_{12} + 8 O_2 \rightarrow 5 CO_2 + 6 H_2O$
 - b. Rate = 0.0299 mol/s
 - c. Rate = 0.24 mol/s
- 4. Zinc and nitric acid
 - a. Rate = -0.11 g/s
 - b. Rate = -0.05 g/s
 - c. As the reaction proceeds, the rate will decrease (fewer reactant molecules)
- 5. Nitrogen and hydrogen
 - a. Rate = $0.09 \text{ mol/L} \cdot \text{s}$
 - b. Rate = $0.06 \text{ mol/L} \cdot \text{s}$
- 6. Graph
 - a. Rate = $-0.05 \text{ mol/L} \cdot \text{s}$
 - b. Rate = -0.0144 mol/L·s

Collision Theory and Energy Diagrams

- 7. See notes
- 8. Energy diagram
 - a. Endothermic
 - b. $\Delta H = -100 \text{ kJ}$
 - c. $E_A = 50 \text{ kJ}$

Factors Affecting Reaction Rates

- 9. Hydrochloric acid and zinc
 - a. 6M, because there is a higher number of reactant molecules, so they will collide more frequently
 - b. The 6M reaction will probably take longer because it will take more time for the reactants to run out
- 10. The molecules will be moving faster, so there will be more collisions (increase rate) and more molecules will have enough energy to react (increase rate)
- 11. Compare energy curves
 - a. B, since more molecules have enough energy to react (right of the E_A line)
 - b. A, since B is already reacting quickly, and increased temperature for A will move a lot of particles past the E_A line

- 13. Inhibitors
 - a. Lower temperature, less surface area (e.g. solid instead of solution), lower concentration
 - b. If products are undesirable (like rust or rot)
- 14. Room filled with hydrogen
 - a. High E_A, temperature is too low
 - b. Increase temperature, add a catalyst
- 15. $A_2(g) + C_2(g) \rightarrow 2AC(g)$, intermediate are A, B, AB, ABC
- 16. Hydrogen peroxide
 - a. $H^+ + H_2O_2 + I^- \rightarrow H_2O + HOI$
 - b. I-, because it is a reactant in the slow step
- 17. Phosgene
 - a. $CO + Cl_2 \rightarrow COCl_2$
 - b. COCl, Cl
 - c. Cl (reactant in step 1, product in step 2)
- 18. Energy diagram
 - a. $\Delta H = -20 kJ$
 - b. $\Delta H_1 = 20 \text{ kJ}, \Delta H_2 = -40 \text{ kJ}$
 - c. $E_{A1} = 80 \text{ kJ}$
 - d. $E_{A2} = 40 \text{ kJ}$
 - e. Step 1, has a higher E_A
 - f. Exothermic
- 19. HCOOH
 - a. High E_A
 - b. H⁺, HCOOH₂⁺, HCO⁺
 - c. H+
 - d. No, since this step is already fast it would be better to speed up step 2
 - e. Step 2