Chemistry 30 – Acid Equilibrium – Unit Homework							
Торіс	Textbook Reading	Textbook Questions					
Properties of Acids and Bases Conjugate Acid/Base Pairs	Section 19.1 (595-601)	#2, 3					
Strength of Acids and Bases Dissociation Constants	Section 19.2 (602-607)	#10, 11					
pH and pOH	Section 19.3 (608-616)	#18-23					
Neutralization and Titration	Section 19.4 (617-621)	19.1 #1 19.4 #29-32					

Properties of Acids and Bases

- 1. List four characteristic properties of acids and of bases.
- 2. Classify each of the following as either an acid or a base:
 - a. The substance has a bitter taste
 - b. H₂SO₄
 - c. litmus paper dipped in this turns red
 - d. reacts with active metals to produce hydrogen gas
- g. has a slippery feel h. has a sour taste

f. NH₃

- i. a proton donor
- j. a proton acceptor

- e. KOH
- 3. Copy the chart and fill it in with definitions.

	Acid	Base
Arrhenius		
Brønsted-Lowry		

4. Which of the following could be considered Brønsted-Lowry bases?

a.	Br⁻	c.	H ₃ PO ₄	e.	H_2O
b.	Li ⁺	d.	NH ₄ ⁺	f.	$\mathrm{NH}_{\mathrm{2}}^{\mathrm{-}}$

Conjugate Acid-Base Pairs

- 5. Identify the acid, base, conjugate acid and conjugate base for each of the following.
 - a. $HClO_4(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + ClO_4^-(aq)$
 - b. $H_2SO_3(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + HSO_3^-(aq)$
 - c. $HC_2H_3O_2(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + C_2H_3O_2^-(aq)$
 - d. $H_2S(g) + H_2O(I) \rightleftharpoons H_3O^+(aq) + HS^-(aq)$
 - e. $HSO_3^{-}(aq) + H_2O(I) \rightleftharpoons H_3O^{+}(aq) + SO_3^{2-}(aq)$
 - f. $NH_3(g) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
 - g. $HF(aq) + HSO_3^{-}(aq) \rightleftharpoons F^{-}(aq) + H_2SO_3(aq)$
 - h. $HNO_2(aq) + HS^{-}(aq) \rightleftharpoons NO_2^{-}(aq) + H_2S(aq)$
- 6. Complete the equation for the reaction of each of the following with water. Then:
 - i. Indicate whether the ion or molecule is an acid or base; and,
 - ii. Indicate whether each reaction is explained by Arrhenius, Brønsted-Lowry, or both.
 - a. $HI(aq) + H_2O(I) \rightleftharpoons$
 - b. $HF(aq) + H_2O(I) \rightleftharpoons$
 - c. $C_2H_3O_2^{-}(aq) + H_2O(I) \rightleftharpoons$
 - d. $CO_3^{2-}(aq) + H_2O(I) \rightleftharpoons$
 - e. $O^{2-}(aq) + H_2O(I) \rightleftharpoons$

- 7. Define the term **amphoteric**. Give an example of an amphoteric compound.
- 8. Write the formula for the conjugate base of:
 - a. H_2SO_3
 - b. HCO3⁻
 - c. NH4⁺
- 9. What are the conjugate bases of these acids?

original acid	conjugate base
HNO ₃	
H ₂ O	
H ₃ O ⁺	
H_2SO_4	
HBr	
HCO ₃ -	

10. What are the conjugate acids of these bases?

original base	conjugate acid
OH-	
H ₂ O	
HCO ₃ -	
SO4 ²⁻	
CIO4-	

- 11. Write the formula for the conjugate acid of:
 - a. H₂O
 - b. CO32-
 - c. PH₃
- 12. Which of the following represent conjugate acid-base pairs?
 - a. H₂O, H₃O⁺
 - b. OH⁻, HNO₃
 - c. H_2SO_4 , SO_4^{-2}
 - d. $HC_2H_3O_2$, $C_2H_3O_2^-$

Strength of Acids and Bases

- 13. What is the difference between a strong acid and a weak acid? Give an example of both.
- 14. Explain the difference between the terms "concentrated" and "dilute" with respect to both strong and weak acids.
- 15. Write a dissociation equation for each acid or base in an aqueous solution. Remember to use a single arrow (\rightarrow) for strong acids and bases and a double arrow (\rightleftharpoons) for weak acids and bases.
 - a. HCl

d. HCN e. H₂SO₄ g. NH₃

- b. NaOH
- c. Ca(OH)₂

f. HC₂H₃O₂

- 16. Write balanced equations for:
 - a. The dissociation of calcium hydroxide
 - b. The ionization of nitric acid
 - c. The ionization of propionic acid
 - d. The ionization of pyridine

Ka and Kb

- 17. Given the following balanced ionization reactions for the following weak acids and bases, write the K_a or K_b expressions for each.
 - a. ascorbic acid: $HC_6H_7O_6$ (aq) \Rightarrow H^+ (aq) + $C_6H_7O_6^-$ (aq)
 - b. boric acid: H_3BO_3 (aq) $\Rightarrow H^+$ (aq) + $H_2BO_3^-$ (aq)
 - c. methylamine: CH_3NH_2 (aq) + H_2O (I) \Rightarrow $CH_3NH_3^+$ (aq) + OH^- (aq)
- 18. Calculate [H+] for a 1.0 \times 10^3 M solution of hydrochloric acid.
- 19. Calculate [H⁺] in a 0.20 M solution of formic acid. K_a = 1.8 \times 10 $^{-4}$

$$HCOOH \rightleftharpoons H^+ + HCOO^-$$

- 20. Ethylamine (C₂H₅NH₂) is a weak base. Calculate [OH⁻] in a 2.32 × 10⁻³ M solution if $K_b = 5.6 \times 10^{-4}$.
- 21. Calculate [OH⁻] is a solution containing 100.0 g of potassium hydroxide in 2.50 L solution. Potassium hydroxide is a strong base.
- 22. A solution is prepared that contains 0.0445 mole of sulfuric acid in a total solution volume of 12.1
 - L. Sulfuric acid typically undergoes complete ionization according to the equation:

$$\mathrm{H_2SO_4} \rightarrow \mathrm{2H^+} + \mathrm{SO_4^{2-}}$$

Calculate [H⁺]. Sulfuric acid is a strong acid.

23. Calculate the hydroxide ion concentration in a 0.045M solution of ammonia, NH₃, a weak base with $K_b = 1.8 \times 10^{-5}$.

pH and pOH

- 24. Determine pH and pOH for each concentration.
 - a. [H⁺] = 0.023 M
 - b. $[H^+] = 6.6 \times 10^{-6} M$
 - c. [OH⁻] = 0.0334 M
 - d. $[OH^{-}] = 9.01 \times 10^{-4} M$
 - e. $[H^+] = 8.96 \times 10^{-3} \text{ M}$
- 25. Determine [H⁺] and [OH⁻] for each pH value.
 - a. pH = 2.5
 - b. pH = 11.3
 - c. pOH = 4.6
 - d. pOH = 8.7
 - e. pH = 7.65
- 26. 4.52 g of calcium hydroxide, a strong base, is dissolved in 1.00 L of water. What is the pH of the resulting solution?
- 27. Methanoic acid (HCHO₂) is a weak acid that undergoes the following ionization reaction:

$$HCHO_2 \rightleftharpoons H^+ + CHO_2^-$$

If 25.0 g of methanoic acid is dissolved to make 0.500 L of solution, what is the pH?

28. A weak base, methylamine, is dissolved in water according to the following dissociation reaction:

$$CH_3NH_2$$
 (aq) + H_2O (I) \Rightarrow $CH_3NH_3^+$ (aq) + OH^- (aq)

If 0.00355 moles of methylamine is present in 1.25 L of solution, what is the pH?

29. Phosphoric acid is a **weak** acid that undergoes the following ionization reaction:

 $H_3PO_4(aq) \rightleftharpoons H^+(aq) + H_2PO_4(aq)$

If there is 1.32×10^{-2} mol of phosphoric acid present in 875 mL of solution, calculate the concentration of hydrogen ions, H⁺, in solution. K_a for phosphoric acid is 7.0×10^{-3} .

- 30. A solution of acetic acid contains 12.0 g of $HC_2H_3O_2$ in 500 mL of solution. Calculate [H⁺].
- 31. Why would the pH be different for a 0.05 M solution of HCl and a 0.05 M solution of acetic acid? What is the difference in pH?
- 32. Calculate the pH of a 0.00345 M solution of analine, $C_6H_5NH_2$, a weak base.
- 33. Calculate the [H⁺] in a solution in which $[OH^-] = 2.0 \times 10^{-2}$ M. Is this solution acidic, neutral, or basic?
- 34. Find pH of each of the following. Identify each as an acidic, neutral, or basic.
 - a. [H⁺] = 0.0015 M
 - b. $[H^+] = 5.0 \times 10^{-9} \text{ M}$
 - c. $[OH^{-}] = 3.27 \times 10^{-4} M$
 - d. [OH⁻] = 1.00×10⁻¹² M
- 35. What is the pH, pOH, [H⁺], and [OH⁻] for a 3.2×10^{-4} M solution of sodium hydroxide?
- 36. What is the pH, pOH, [H⁺], and [OH⁻] for a 9.20×10^{-3} M solution of sulfuric acid?

Neutralization

- 37. How many moles of NaOH are needed to completely neutralize 0.432 mol of H₂SO₄?
- 38. How many moles of Ca(OH)₂ are needed to completely neutralize 0.530 mol of H₃PO₄?
- 39. It takes 38 mL of 0.75 M NaOH solution to completely neutralize 155 mL of a sulfuric acid solution (H_2SO_4) . What is the concentration of the H_2SO_4 solution?
- 40. It takes 12.5 mL of a 0.30 M CH₃COOH solution to completely neutralize 285 mL of NaOH solution. What is the concentration of the NaOH solution?
- 41. It takes 50 mL of 0.500 M KOH solution to completely neutralize 125 mL of sulfuric acid solution. What is the pH of the sulfuric acid solution?
- 42. What is the pH of a NaOH solution if it takes 100.0 mL to neutralize 150.0 mL of 3.00 M H_2CO_3 solution?
- 43. Titration reveals that 11.6 mL of 3.0 M sulfuric acid are required to neutralize the sodium hydroxide in 25.00 mL of NaOH solution. What is the molarity of the NaOH solution?
- 44. When 34.2 mL of a 1.02 M NaOH solution is added from a buret to 25.00 mL of a phosphoric acid solution that contains phenolphthalein, the solution changes from colorless to pink. What is the molarity of the phosphoric acid?