\qquad Period:

Date:
Chemistry 30 - Acid Equilibrium - Unit Homework

Topic	Textbook Reading	Textbook Questions
Properties of Acids and Bases Conjugate Acid/Base Pairs	Section $19.1(595-601)$	$\# 2,3$
Strength of Acids and Bases Dissociation Constants	Section $19.2(602-607)$	$\# 10,11$
pH and pOH	Section $19.3(608-616)$	$\# 18-23$
Neutralization and Titration	Section $19.4(617-621)$	$19.1 \# 1$ $19.4 \# 29-32$

Properties of Acids and Bases

1. List four characteristic properties of acids and of bases.
2. Classify each of the following as either an acid or a base:
a. The substance has a bitter taste
f. NH_{3}
b. $\mathrm{H}_{2} \mathrm{SO}_{4}$
c. litmus paper dipped in this turns red
d. reacts with active metals to produce hydrogen gas
e. KOH
g. has a slippery feel
h. has a sour taste
i. a proton donor
j. a proton acceptor
3. Copy the chart and fill it in with definitions.

	Acid	Base
Arrhenius		
Brønsted-Lowry		

4. Which of the following could be considered Brønsted-Lowry bases?
a. Br^{-}
b. Li^{+}
c. $\mathrm{H}_{3} \mathrm{PO}_{4}$
d. $\mathrm{NH}_{4}{ }^{+}$
e. $\mathrm{H}_{2} \mathrm{O}$
f. $\mathrm{NH}_{2}{ }^{-}$

Conjugate Acid-Base Pairs

5. Identify the acid, base, conjugate acid and conjugate base for each of the following.
a. $\mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}_{4}^{-}(\mathrm{aq})$
b. $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{3}^{-}(\mathrm{aq})$
c. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})$
d. $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq})$
e. $\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$
f. $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
g. $\mathrm{HF}(\mathrm{aq})+\mathrm{HSO}_{3}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
h. $\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$
6. Complete the equation for the reaction of each of the following with water. Then:
i. Indicate whether the ion or molecule is an acid or base; and,
ii. Indicate whether each reaction is explained by Arrhenius, Brønsted-Lowry, or both.
a. $\mathrm{HI}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons$
b. $\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons$
c. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons$
d. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons$
e. $\mathrm{O}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons$
7. Define the term amphoteric. Give an example of an amphoteric compound.
8. Write the formula for the conjugate base of:
a. $\mathrm{H}_{2} \mathrm{SO}_{3}$
b. HCO_{3}^{-}
c. $\mathrm{NH}_{4}{ }^{+}$
9. What are the conjugate bases of these acids?

original acid	conjugate base
HNO_{3}	
$\mathrm{H}_{2} \mathrm{O}$	
$\mathrm{H}_{3} \mathrm{O}^{+}$	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	
HBr	
$\mathrm{HCO}_{3}{ }^{-}$	

10. What are the conjugate acids of these bases?

original base	conjugate acid
OH^{-}	
$\mathrm{H}_{2} \mathrm{O}$	
$\mathrm{HCO}_{3}{ }^{-}$	
$\mathrm{SO}_{4}{ }^{2-}$	
$\mathrm{ClO}_{4}{ }^{-}$	

11. Write the formula for the conjugate acid of:
a. $\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{CO}_{3}{ }^{2-}$
c. PH_{3}
12. Which of the following represent conjugate acid-base pairs?
a. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{O}^{+}$
b. $\mathrm{OH}^{-}, \mathrm{HNO}_{3}$
c. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{4}^{-2}$
d. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$

Strength of Acids and Bases

13. What is the difference between a strong acid and a weak acid? Give an example of both.
14. Explain the difference between the terms "concentrated" and "dilute" with respect to both strong and weak acids.
15. Write a dissociation equation for each acid or base in an aqueous solution. Remember to use a single arrow (\rightarrow) for strong acids and bases and a double arrow (\rightleftharpoons) for weak acids and bases.
a. HCl
b. NaOH
c. $\mathrm{Ca}(\mathrm{OH})_{2}$
d. HCN
e. $\mathrm{H}_{2} \mathrm{SO}_{4}$
f. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
g. NH_{3}
16. Write balanced equations for:
a. The dissociation of calcium hydroxide
b. The ionization of nitric acid
c. The ionization of propionic acid
d. The ionization of pyridine

K_{a} and K_{b}

17. Given the following balanced ionization reactions for the following weak acids and bases, write the K_{a} or K_{b} expressions for each.
a. ascorbic acid: $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}{ }^{-}(\mathrm{aq})$
b. boric acid: $\mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{BO}_{3}^{-}(\mathrm{aq})$
c. methylamine: $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
18. Calculate $\left[\mathrm{H}^{+}\right]$for a $1.0 \times 10^{-3} \mathrm{M}$ solution of hydrochloric acid.
19. Calculate $\left[\mathrm{H}^{+}\right]$in a 0.20 M solution of formic acid. $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$

$$
\mathrm{HCOOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCOO}^{-}
$$

20. Ethylamine $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ is a weak base. Calculate $\left[\mathrm{OH}^{-}\right]$in a $2.32 \times 10^{-3} \mathrm{M}$ solution if $\mathrm{K}_{\mathrm{b}}=5.6 \times 10^{-}$ ${ }^{4}$.
21. Calculate $\left[\mathrm{OH}^{-}\right]$is a solution containing 100.0 g of potassium hydroxide in 2.50 L solution. Potassium hydroxide is a strong base.
22. A solution is prepared that contains 0.0445 mole of sulfuric acid in a total solution volume of 12.1 L. Sulfuric acid typically undergoes complete ionization according to the equation:

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}
$$

Calculate $\left[\mathrm{H}^{+}\right]$. Sulfuric acid is a strong acid.
23. Calculate the hydroxide ion concentration in a 0.045 M solution of ammonia, NH_{3}, a weak base with $K_{b}=1.8 \times 10^{-5}$.

pH and pOH

24. Determine pH and pOH for each concentration.
a. $\left[\mathrm{H}^{+}\right]=0.023 \mathrm{M}$
b. $\left[\mathrm{H}^{+}\right]=6.6 \times 10^{-6} \mathrm{M}$
c. $\left[\mathrm{OH}^{-}\right]=0.0334 \mathrm{M}$
d. $\left[\mathrm{OH}^{-}\right]=9.01 \times 10^{-4} \mathrm{M}$
e. $\left[\mathrm{H}^{+}\right]=8.96 \times 10^{-3} \mathrm{M}$
25. Determine $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for each pH value.
a. $\mathrm{pH}=2.5$
b. $\mathrm{pH}=11.3$
c. $\mathrm{pOH}=4.6$
d. $\mathrm{pOH}=8.7$
e. $\mathrm{pH}=7.65$
26. 4.52 g of calcium hydroxide, a strong base, is dissolved in 1.00 L of water. What is the pH of the resulting solution?
27. Methanoic acid $\left(\mathrm{HCHO}_{2}\right)$ is a weak acid that undergoes the following ionization reaction:

$$
\mathrm{HCHO}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CHO}_{2}^{-}
$$

If 25.0 g of methanoic acid is dissolved to make 0.500 L of solution, what is the pH ?
28. A weak base, methylamine, is dissolved in water according to the following dissociation reaction:

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

If 0.00355 moles of methylamine is present in 1.25 L of solution, what is the pH ?
29. Phosphoric acid is a weak acid that undergoes the following ionization reaction:

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})
$$

If there is $1.32 \times 10^{-2} \mathrm{~mol}$ of phosphoric acid present in 875 mL of solution, calculate the concentration of hydrogen ions, H^{+}, in solution. K_{a} for phosphoric acid is 7.0×10^{-3}.
30. A solution of acetic acid contains 12.0 g of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ in 500 mL of solution. Calculate $\left[\mathrm{H}^{+}\right]$.
31. Why would the pH be different for a 0.05 M solution of HCl and a 0.05 M solution of acetic acid? What is the difference in pH ?
32. Calculate the pH of a 0.00345 M solution of analine, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$, a weak base.
33. Calculate the $\left[\mathrm{H}^{+}\right]$in a solution in which $\left[\mathrm{OH}^{-}\right]=2.0 \times 10^{-2} \mathrm{M}$. Is this solution acidic, neutral, or basic?
34. Find pH of each of the following. Identify each as an acidic, neutral, or basic.
a. $\left[\mathrm{H}^{+}\right]=0.0015 \mathrm{M}$
b. $\left[\mathrm{H}^{+}\right]=5.0 \times 10^{-9} \mathrm{M}$
c. $\left[\mathrm{OH}^{-}\right]=3.27 \times 10^{-4} \mathrm{M}$
d. $\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-12} \mathrm{M}$
35. What is the $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}^{+}\right]$, and $\left[\mathrm{OH}^{-}\right]$for a $3.2 \times 10^{-4} \mathrm{M}$ solution of sodium hydroxide?
36. What is the $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}^{+}\right]$, and $\left[\mathrm{OH}^{-}\right]$for a $9.20 \times 10^{-3} \mathrm{M}$ solution of sulfuric acid?

Neutralization

37. How many moles of NaOH are needed to completely neutralize 0.432 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
38. How many moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ are needed to completely neutralize 0.530 mol of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
39. It takes 38 mL of 0.75 M NaOH solution to completely neutralize 155 mL of a sulfuric acid solution $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. What is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
40. It takes 12.5 mL of a $0.30 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution to completely neutralize 285 mL of NaOH solution. What is the concentration of the NaOH solution?
41. It takes 50 mL of 0.500 M KOH solution to completely neutralize 125 mL of sulfuric acid solution. What is the pH of the sulfuric acid solution?
42. What is the pH of a NaOH solution if it takes 100.0 mL to neutralize 150.0 mL of $3.00 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$ solution?
43. Titration reveals that 11.6 mL of 3.0 M sulfuric acid are required to neutralize the sodium hydroxide in 25.00 mL of NaOH solution. What is the molarity of the NaOH solution?
44. When 34.2 mL of a 1.02 M NaOH solution is added from a buret to 25.00 mL of a phosphoric acid solution that contains phenolphthalein, the solution changes from colorless to pink. What is the molarity of the phosphoric acid?
